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1. Introduction

In this paper we present an algorithm for finding collision-free paths for a rigid polygonal

object moving through space that is cluttered with obstacle polygons. The paths can

include rotations of the object. The algorithm will find a path from a given initial position

and orientation to a goal position and orientation if such a path exists, subject only to a

user-specified resolution limit on displacements.

The problem addressed here is an instance of the problem known as the findpath or

mover's problem in robotics. The problem arises when planning the motion of a robot

manipulator or mobile robot in an environment with known obstacles./. For related ap-

proaches to the findpath problem, see Brooks [19821, Lozano-Pfrez 1981, 1983], Lozano-

Pirez and Wesley 119791, Moravec [1980], Schwartz and Sharir 11981, 1982j, and Udupa

119771. A survey of the different approaches to findpath and a discussion of its role in robot

task planning can be found in Losano-P6res [1983].

The algorithm described here is based on the configuration space approach described

by Losano-Pres [1981, 1983]. The configuration of a rigid object is a set of independent

parameters that characterize the position of every point in the object. We associate a

local coordinate frame with a rigid object, such as a planar polygon. The configuration

of the polygon can be specified by the x, y position of the origin of the local coordinate

frame, known as the reference point and a 0 value indicating the rotation of the local frame

relative to the global frame. The space of all possible configurations of an object is its

configuration space. A point in the configuration space, a configuration point, represents a

particular position of the object's reference point and an orientation of the object's axes.

The configuration space for planar polygons is three-dimensional while that of solid

polyhedra is six-dimensional: three translational and three rotational dimensions. Due to

the presence of the immovable obstacles some regions of the configuration space are not

reachable; these regions are the configuration obstacles. Hence, in the configuration space,

4 the moving object is shrunk to a configuration point while the immovable obstacles are
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expanded to fill all space where the presence of the configuration point would imply a
r •collision of the object with obstacles. The findpath problem of finding a path for the object

through the original space while avoiding obstacles is thus transformed to finding a path

for the configuration point through the configuration space while avoiding the configuration
obstacles.

The fundamental structure of the algorithm is extremely simple. Configuration space

is first divided into rectangloids with sides normal to the axes of the space. Each rectangloid

is labeled as (1) empty if the interior of the rectangloid nowhere intersects a configuration

obstacle, (2) full if the interior of the rectangloid everywhere intersects the configuration

obstacles or (3) mixed if there are interior points both inside and outside of configuration

obstacles. A free path is found by first finding a connected set of empty rectangloid cells that

include the initial and goal configurations and constructing a piecewise linear path through

those empty cells. If such an empty cell path cannot be found in the initial subdivision

of configuration space then a path that includes mixed cells is found. Mixed cells on the

path are subdivided, by cutting them with a single plane normal to a coordinate axis, and

each resulting cell is appropriately labeled as empty, full, or mixed. Another search for an

empty-cell path is initiated, and so on iteratively until success is achieved. If at any time

no path can be found through non-full cells of greater than some preset minimum size,

then the problem as posed is insoluble (i.e., no collision free path exists given the resolution

limit).

The conceptual and practical problems that must be solved to implement this algorithm
are as follows:

(a) What is an efficient algorithm for labeling the newly cut cells as empty, full or

mixed?

(b) How should configuration space be initially divided into rectangloids?

(c) Where should a mixed cell be cut when it is subdivided?

3 ~
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(d) What additional information should be kept with mixed cells describing the

configuration space obstacles they intersect?

(e) How should the iterative search be controlled?

Section 2 answers questions (a) through (d) for the case of planar polygons with no

rotations allowed. It develops a grid based representation for configuration space, and

develops some key operations on that representation.

Section 3 shows how the representation can be simply extended to handle rotations

of the moving object - the representation of configuration space is extended into three

dimensions.

Section 4 discusses question (e) and describes a procedure that produces a reasonably

efficient search.

Section 5 shows results and discusses some of the limitations of the algorithm. 9.

4
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Figure 1. A configuration obstacle, COA(B), for convex polygons A and B

2. Representation of Configuration Space Obstacles

For a convex polygonal moving object A and a convex polygonal obstacle B we write the

configurations forbidden for A as COA(B). Figure I shows such a configuration obstacle

for polygons A and B where their relative orientation is fixed. Losano-Pires (19831 showed

that COA(B), for fixed relative orientations of convex A and B, is also a convex polygon.

A convex polygon can be expressed as a conjunction of linear inequalities.

When changes in the orientation of the moving object are allowed, the resultant

COA(B) are neither convex nor bounded by half-spaces. Their surfaces are curved, although

they do have the property that when cut by a plane parallel to the rotation dimension

they have polygonal cross sections (since such a cross section corresponds to a single fixed

orientation).

Losano-P6res [19831 showed that for two dimensional A and B the surfaces of the
:_%

configuration obstacle could be expressed as inequalities each valid over an infinite rec-

tangloid R in (z, y, 9) space, where

5
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Figure 2. Non-convex moving objects can be decomposed into a union of convex objects
sharing a common reference point and reference orientation.

R = l-o, oo] X 1-o, o X [I1, 021

for some fixed 01 and 02. The forms of these surfaces are given in section 3.3.

Hence, either with or without rotation for a single convex obstacle and a convex

moving object we can cut up configuration space into rectangloids R. The subset of the

configuration space obstacle that intersects R can be defined by those points in R, such

that Ai e, is satisfied, where each e, is an inequality.

In the more general case the moving object A is represented as a union of (possibly

overlapping) convex polygons. Similarly, multiple obstacles are each represented as unions

of convex polygons. Let the convex moving polygons be A1,A,... ,A.. Define a single

reference point P and reference orientation for all the A4. See Figure 2 for an example.

Let the convex obstacle polygons be BI,B2,... ,B,.

The path for object A can be found through the obstacle littered space by finding a

path for the configuration point through configuration space filled with the union of the

COA,(Bj)'I or COA (Bj)'s. Hence, for arbitrary obstacle and moving object polygons, we

first decompose them into the unions of convex polygons; then, for all pairs of obstacle and
object polygons we compute the configuration space obstacles. These new obstacles are all
embedded in the same configuration space, and a collision-free path is found through it for

6
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the configuration point of the object to be moved.

In the remainder of this section we develop the representation of configuration space for

2 dimensions with fixed orientation. Section 3 generalizes to 2 dimensions with rotations.

2.1 Representation of Configuration Space.

Individual configuration obstacles can be represented as a conjunction of inequalities

We refer to these inequalities as constraints. Each one has the form f(x) _ 0, where x

is the configuration point for the moving object. A point x is inside such a constraint if

f(x) < 0, outside if f(x) > 0 and on the constraint if f(x) = 0. A point is contained in

a configuration obstacle if it is not outside any of its defining constraints. A point z is on

the surface of an obstacle if it is on some constraint.

A configuration obstacle can be bounded by a finite rectangloid box in configuration

space with edges parallel to the coordinate axes. The obstacle embedded in configuration

space can then be represented as the box along with a conjunction of constraints. If two

obstacles are embedded in the same space and the boundary boxes intersect then the two

boxes can be decomposed into a union of boxes. Each resulting box has associated with

it a disjunction of the conjunctions representing the original two obstacles. Of course, the

sub-boxes that only overlapped a single configuration space obstacle have just the original

conjunction.

More for, "c]ly, we represent configuration obstacles as follows. Configuration space is

subdivided into rectangloid cells in order to represent the embedding of many configuration

obstacles. Each cell is a closed rectangloid with edges parallel to the coordinate axes. The

union of all cells is the whole space and no point is in the interior of two cells. Associated

with each cell is a sentence of constraints of the form

7u-I ji--
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Each conjunction of constraints in a sentence will be referred to as a clause and each clause J
is made up of terms, i.e., each constraint will be referred to as a term.

A point is said to be inside sentence S if for some clause of the disjunction it is not

outside any of the constraints. A point is said to be outside sentence S if it is outside some

constraint in every clause. A cell C with associated sentence S is labeled as

(1) empty if no point of C is inside S,

(2) full if no point of C is outside S,

(3) mixed otherwise.

The labeling is done as a by-product of trying to simplify sentence S; see below.

2.2 Simplification of Constraint Sentences.

Both while constructing the original representation of configuration space and when sub-

dividing cells during search it is necessary to associate a constraint sentence S with a cell

C. It may be the case that the cell is completely outside or completely inside some con-

straints in S. The procedure below both simplifies S by removing such constraints and, as

a by-product, labels the cell empty, full, or mired.

8 J
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procedure SiaplifyAndLabel (C. S);

begin
foreacb CLAUSE in S do

begin
foreach TERM in CLAUSE do
begin

case CellCompare (C, TERM) of
Inside: remove TERM from CLAUSE;
Outside: begin

remove CLAUSE from S;
goto next CLAUSE;

end;
Cut:

endcase;

end;
if CLAUSE is nil

then begin
label C with full
set S to nil;

exit from SimplifyAndLabel;

end;
end;

if S is nil

then label C with empty
else label C with mixed;

end;

Figure 3 illustrates the behavior of the algorithm.

A sub-procedure CellCompare is used to compare a cell C with a single constraint, e

say. It returns one of:

(1) Outside if no point of C is inside e,

(2) Inside if no point of C is outside e,

(3) Cut otherwise.

The formulation of CellCompare depends on the form of constraints to be considered.

Note also that in general the surface of a constraint (i.e., those points on the constraint) is

of lower dimension than the configuration space in which it is embedded. Thus a constraint
A9
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Figure 3. The SimplifyAndLabel procedure labels cells and simplifies constraint sentences
of cells.

fills only a subset of measure zero of a cell.

.9*

2.3 Comparing a Cell to a Single Constraint.

When no rotations are allowed all the constraints describing a configuration obstacle are

linear. To decide whether a cell is cut by a linear constraint, or if it lies on at most one side

of the constraint, it suffices to test whether all the vertices of the cell are on the same side

of the constraint. This test can be generalized to testing the vertices of convex polygonal

cells.

5---"1

2.4 Bounding Configuration Obstacles.

Let (6,., b,,) be vertices of B, and (a,2 , a,,) are verticeu of A relative to reference point* L
P. Lozano-P~res 11983) showed that COA(B), in two dimensions without rotations and for

convex A and B, is the convex hull of all the points of the form

(bis - a,,, bjV - a,,)

10
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Hence, COA(B) can be bounded by the rectangle

where
xh = min(b,, - az)

xh= max(b,1 - a,) -

YL = min(by - a.,)

Yh = max(by - aj).
sJ

2.5 Constructing an Initial Representation of Configuration Space.

We are now in a position to construct an initial representation of configuration space. There

are two operations. (1) Cut space into rectangloid cells. (2) Build a connectivity graph

between the cells. By combining the second operation with the first it is possible to reduce

its complexity to linear in the final number of cells.

CID Figure 4 shows a configuration space cut into rectangular cells. Figure 5 shows its

corresponding connectivity graph.

A cell is represented by a rectangle, a constraint sentence in constraints that cut it, a

label from among full, empty, and mixed, and pointers to neighboring cells. The neighbors

' are grouped according to their direction, e.g. +x, -x, +y, and -y for two dimensional

configuration space. During construction of the initial representation of configuration space,

the elements within these groupings may be ordered. Temporarily, a cell can also contain

a list of configuration obstacle bounding rectangles; see below.

• 2"1

11 :.2-
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6 Figure 5. Connectivity graph for cells in Figure 4. The link labeled A is not actually
included in the graph as it is impossible to traverse it.
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The cutting algorithm proceeds as follows. An order is chosen for lic cuordiljte. of

the configuration space. For illustrative purposes assume it is x followed by Y. For the

first of these coordinates (x) the bounding rectangles for each COA,(BJ) are sorted on their

lower bound in that coordinate. Rectangles with the same lower bound are sorted on their

upper bounds.

The list of values of the first coordinate for the upper and lower bounds of all bounding

rectangles is sorted and used to divide the configuration space into large cells (strips) with

boundaries at each of these values. The neighborhood relations formed due to cutting j
are trivially computed, and newly cut strips are linked to their two neighbors, in the

-x and ±x directions. As the list of bounding rectangles is scanned, any that overlap

a strip are cut at the strip boundaries. The constraint sentence of the corresponding

configuration obstacle is associated with the new bounding rectangle and, then, simplified

by the procedure SimplifyAndLabel. Any empty bounding rectangle can be removed from

further consideration. The new bounding rectangles with simplified sentences are associated

with the newly formed strips.

The second stage applies almost the same procedure recursively to each strip, cutting

the strips along the second coordinate (y in this case). The new bounding rectangles

associated with the strips in the first pass provide the cutting values. The strips are

considered in ascending order of their lower x bounds. Cutting the first (least x) strip

proceeds much as before except that every new cell has the second strip as its +z neighbor.

The -x neighbor relation in the second strip is replaced by pointers to the new cells derived

from the first strip, ordered by increasing value of y. The -y and + neighbor relations

between newly cut cells are trivially computed.

Subsequent strips are similarly divided, but now, besides scanning the bounding rec-

tangles in order of increasing value of their lower y bounds, the neighbors produced by

cutting the previous strip are also scanned. The ordered -x neighbor relations of the

subsequent strip are used for this scan. This process is illustrated in figure 6. It shows

*some detail of the construction of figures 4 and 5. The third strip is cut in the y direction

13
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Figure 6. As strips are cut in the second direction an ordered hst of pointers to the cells
produced in the previous strip is followed producing the neighbor relations in linear time.

following the cutting of the first two strips. The partially constructed connectivity graph

includes directed arcs from strip 3 to the 3 cells of strp 2. An ordered list of cuts, a, b, c and
d, is scanned in parallel with the ordered list of arcs r, s and t. The scan makes use of two

pointers one into each list; each pointer is incremented until it passes the other pointe., and

then that pointer is incremented. Whenever the pointer into the cut list is incremented,

a cut is made and the new cell uses the other pointer to determine its connectivity graph

neighbor in the -z direction. At the same time a new ordered list of pointers from strip

4 into the new cells is constructed for use when cutting that strip. This process is iterated

for all the strips in order of increasing z lower bound. In general this procedure can be

applied recursively to as many dimensions as the space has.

During the final cutting operation when the last coordinate (y in this case) is being used,

the bounding rectangles are handled differently. Instead of associating the new bounding

14



rectangle directly with the newly cut cells of configuration space, their constraint sentences

are associated with the cell. The constraint sentences or all the bounding rectangles that

overlap a cell are combined disjunctively and the result becomes the constraint sentence of

the configuration space cell. The SimplifyAndLabel procedure is applied to the new cell and
this disjunctive sentence. Any cell so labeled full need not be linked into the connectivity

graph. The result of the final operation is shown for the example in Figure 5.

A refinement of the above procedure is prompted by the following observation. Two

neighboring cells C, and C2 intersect in a rectangloid cell C one dimension lower than

the original cells. Both constraint sentences S1, from C1, and S2, from C2, apply to

the intersection cell. If either SimplifyAndLabel(C, SI) or SimplifyAndLabel(C, S2) label

C as full then the configuration point cannot move directly from cell C1 to C2. Hence,

although spatially neighbors, none of their empty interior points are connected by a path

for the moving object's configuration point. Thus their neighbor relation can be omitted

from the connectivity graph. For this reason, link A of Figure 5 can be deleted. This

refinement significantly cuts down the number of links in realistic connectivity graphs,

greatly increasing efficiency.

In two-dimensional configuration space there is no inherent advantage to choosing one

of x or y as the initial drection in which to cut space. In higher dimensions this will become

an issue.

A major drawback to the described cutting operation is that a number of small obstacles

localised in one part of space can have significant global effects on the representation of space

elsewhere, e.g., the effect of z bounds in Figure 4. This can become a significant problem

in three-dimensional configuration space and more refinements to the above procedure are

introduced in section 3.5 to deal with this.

2.6 Deciding Where to Cut a Cell.

-4

During search, the representations of mixed cells that lie on the candidate path are refined.
-'. 15
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A cell C with sentence S is cut into two cells, C, and C2, by splitting along one of its

coordinates. Then, each sub-cell is labeled by calling SimplifyAndLabel(C., S) for i = 1,2. -

The cutting operation can help the search converge on a path through empty cells but

only if it makes it easier to deduce if at least one of the C,'s is full or empty. This will be

the case if the number of constraints appearing in at least one sentence S, is reduced from

the number that appeared in S. Such simplification can be achieved if one of the new cells

lies wholly inside or outside a constraint. We refer to it as the simpler sub-cell.

Two heuristic principles have also been used in the implemented algorithms described

here. First, it is desirable that the new cell with simpler constraint sentence should have

the maximal volume possible. This offers the possibility of finding that a large volume is

either empty or full. In one case it makes the search for a free path easier and in the other

eliminates a large volume from further consideration. The second heuristic principle is that

large amounts of computation in choosing the place to cut a cell, would be better spent in

cutting the cell into more, less well chosen, pieces, as more cuts result in greater likelihood

of actually finding empty or full sub-cells.

Thus there are three problems; (1) find cuts that lead to simpler S and S2; (2) choose

the one that gives the simpler cell a large volume; (3) compute (1) and (2) quickly. Here we

show how to choose a good cut according to these criteria. The method is stated in more

generality than necessary so that it can easily be extended to the higher dimensional cases

later in the paper.

The basic approach is as follows. Consideration is given to cutting the cell in each

direction (z and y in this case) at some number of points for each constraint in the cell's

constraint sentence. A score is assigned to each such plausible cut, and the cut with minimal

score is chosen as best.

For each constraint, the candidate places to cut perpendicular to the x direction, say,

are those y values where the constraint intersects a cell edge parallel to the z direction.

16



Figure 7. Given two intersection points of a constraint and boundary edges, the cell is cut
at the intersection point closest to the center of the boundary edges. The two cases that
are illustrated here show that this produces the simpler cell with maximal volume.

Only such points that are not at an extreme y value for the cell need be considered. There

will be either zero, one or two of these points for each constraint and each chosen direction

of cutting. The cuts associated with these points have the following properties.

(a) At least one of the two resulting cells is either completely inside or outside the

constraint. Thus its constraint sentence will be simplified, satisfying condition (1) above.

(b) By choosing to cut at the point of intersection of the constraint and the cell edge,

the volume of the simpler cell is maximized. This helps towards satisfying (2) above.

It remains now to define the scoring function. If the length of the cell in the z direction

is scaled to 1.0 then the score of a cut is its distance in those units from the center in the

z direction. Note that this score is a proportion of the volume of the original cell that is

added or subtracted from half its volume to get the volumes of the two new cells. Thus

the scale of this measure is independent of the constraint or the direction of cut.

If a given constraint and direction of cut produces two candidate cuts then the one

with lowest score is the one that produces a simpler cell with maximal volume (helping in

the achievement of (2)). This can be shown by considering two cases, illustrated in Figure

7.

17
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Case 1. The two candidate cuts are on the same side of the midpoint. Then the simpler
sub-cell that includes the midpoint has volume greater than half the total, so it must be

the larger. The cut closest to the midpoint produces that sub-cell.

Case 2. The two candidate cuts are on opposite sides of the midpoint. The larger

simpler sub-cell is the one whose cut is closest to the midpoint.

Note that, for a particular cutting direction, the simple score comparison chooses the

cut for a single constraint that best satisfies condition (2) above. It does this without

analysis of the constraint other than where it cuts the edges of the cell. In particular, the

simpler cell was not explicitly identified, nor was its volume computed. To satisfy condition

(2) globally over all constraints and cutting directions would require such an explicit volume

computation, which would require a detailed analysis of the interaction of each constraint

and the cell, violating condition (3).

In our implementation we choose the cut by picking the candidate with the lowest score

from among all cutting directions and single constraints. This has the effect of choosing a

cut that produces a simpler cell with volume closest to half the original cell volume. The

chosen cell may not be the best possible choice in terms of condition (2), but it is certainly

not a poor choice. If all possible simpler cells have volume less than half the original, then

this algorithm will in fact choose the cut that results in the largest such cell. If there

are cells bigger than half, then the biggest one might not be chosen; condition (3) is well

satisfied, however.

18



3. Representing Rotations

The structure of the algorithms and representations for two-dimensional configuration

spaces can be extended naturally to three-dimensional configuration spaces, when the

moving polygon is allowed to rotate. For the most part the extensions are straightforward.

There are two additional considerations in the cases where rotations are allowed, however.

(1) The cell comparison and cut selection problems are no longer linear, and so new

algorithms must be developed to solve them.

(2) Rotations result in a configuration space with higher dimension than the original

space in which the problem is embedded. Care must be taken to ensure the space repre-

sentation does not result in unnecessary fragmentation into an inordinate numbers of cells.

Such fragmentation greatly impedes search efficiency.

This section generalizes the rapresentations and algorithms of section 2 to the case of

two dimensions with rotation.

3.1 Representation of Configuration Space.

For two-dimensional obstacles with a rotating moving object, the configuration space is

three-dimensional; two dimensions inherited from the original space and an orthogonal

rotation dimension. The representation of configuration space in this case is a simple

generalization from the two-dimensional configuration space, i.e., a union of closed rec-

tangloid cells that have no common interior points. The sides of the rectangloids are or-

thogonal to the axes of the configuration space. Each cell has associated with it a label from

among full, empty, and mixed. Each mixed cell also has an associated constraint sentence

that is a disjunction of conjunctions of constraints. Points within the cell that satisfy the

constraint sentence are forbidden points in configuration space; others represent locations

and orientations of the moving object where it does not collide with the obstacles. The cells

are linked in a connectivity graph, but now cells can have neighbors in either direction along

~19

sI



the two linear dimensions, and in each direction along the rotational dimension. Tile linear

and rotational dimensions are treated completely uniformly within the representational

scheme.

Again each contraint is of the form f(z) 0. A point z is inside such a constraint if

f(x) < 0, outside if f(x) > 0 and on the constraint if f(x) - 0. Whereas before f was a

linear function, it now has trigonometric terms. Lozano-PNrez [19831 derived the two forms

that these constraints can take for planar polygons:

f(x, y,)-- z coo (0 X) + y sin (9 X,) - libjlcos(e + X, - yl) - Ia,Ilcos (X, - 1,)

(type A)

and

f(x,y,O) = zcosO, + ysin~, - IIbJfcos(% - j) - lia,illcos(0 + 1, - 0.) (type B).

Here the ai's are vertices of the "negated" moving polygon (eA in Lozano-Pres

11981, 1983]), in its local coordinate system. q, is the angle the line from the origin of that

coordinate system to the point a, makes with the coordinate system's z axis, and X, is

the angle made by the normal to the segment from a, to a,+,. Similarly the b,'s are the

vertices of a convex obstacle polygon, -1, the orientation of the line from the origin to b.,

and 0, the orientation of the normal to the segment from b, to b, +. The parameter 9, a

parameter of the configuration space, measures the angle between the x-axes of the object

and obstacle coordinate systems.

Type A constraints can be thought of as being generated by a face (edge) of the moving

object A coming into contact with a vertex of an obsacle B, and a type B constraint as a

vertex of A coming into contact with a face (edge) of B.

Each constraint is valid only over a fixed range of 0. For type A surfaces the range is

given by

0 10 ,-1 - ]
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Figure 8. The two types of surfaces can be defined by bring the reference point of the
negative of moving object A into contact with a vertex and an edge of fixed obstacle B.
Both are defined over a range of orientation& 9.
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and for type B surfaces by

GE 10, - 01 - X,.-

A constraint is only included in the constraint sentence of a cell whose 0 range lies witl;,i

its range of validity.

3.2 Simplification of Constraint Sentences.

The simpliEcation algorithm needs no generalization. It does make use of a much more

complex CellCompare procedure described below, however.

3.3 Comparing a Cell to a Single Constraint.

The idea of treating the spatial and rotational components of configuration space uniformly

breaks down when comparing a cell to a constraint. This is because the constraint surfaces

are, in some sense, "well behaved" with respect to x and y, but "poorly behaved" with

respect to 0 - the surfaces can creep into, and out of a cell along an edge in the 0 direction,

while the vertices at both ends are on the same side of the constraint.

For a fixed 00 both type A and type B constraint surfaces become a single, infinite,

straight line. Type A and B constraints are, therefore, ruled surfaces, which are valid

over some range 161, 021. Consider the projections into the z-y plane of the portions of

these surfaces in the range [01, 92] (slice projections in the terminology of Lozano-P6res

11981, 1983]). Points outside the projection must support columns in the 9 direction that

are either completely inside or completely outside the constraint. Furthermore, there will

be two disjoint regions outside the projection that correspond to these types of columns.

Figure 9 illustrates the projection of both a type A and a type B constraint.

Now consider the projection of the cell into the z-y plane. If the resulting rectangle is

wholly within the inside region of the constraint projection then the original cell is Inside

the constraint. If it is within the outside region then the cell is Outside the constraint.

If any point of the cell projection is in the interior of the constraint surface projection,
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INSSDE DSIDE

LMIXED
Type A Type B

Figure 9. Slice projections into the z-V plane of Type A and Type B surfaces from
configuration obstacles. These projections divide the plane into three regions: inside, mixed,
and outside. The CellCompare procedure must determine where the projection of a cell
lies relative to these regions.

however, then the cell is Cut by the constraint.

Thus the procedure CellCompare has been reduced to two more primitive operations;

projection of the constraint surface into the z-y plane, and comparison of a rectangle to

the two regions of the plane outside of that projection. If those regions are convex then

the comparison is simple, as a convex polygon is contained in a convex set if and only if all

its vertices are contained in the. region.

A type B constraint projects into a strip with parallel sides. On one side is a half plane

corresponding to points inside the constraint and on the other a half plane corresponding

to points on the outside. Clearly th se regions are both convex. The equations of the sides

of the strip are:
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xcosoi1  y -sin 0, -IIbIlIcos(, - -l)- IIa,llcos(Oa + ,7,- 01) 0

and

zcoso, +y sin 0, - Ilb,1icos(0, - i'j) - Ila, I1cos(Ob + ,7, 0)- 0,

where 0, and Ob provide the extreme values for cos(6+ 7, - 0,) over the range [01,021.

Thus they take on two of the values from the set { 01, 02, 0, -7, } (so long as the third angle

lies between the first two). It is an extremely simple computation to determine whether all

the vertices of the projected cell lie in one of the two half planes.

Type A constraints are considerably more difficult to deal with, as the orientation of

the ruled line on the constraint surface rotates with changing 0. Herp. we carry out the

analysis for the case that cos(X, - ij,) > 0. The opposite case is similar with some sign

changes, and a change in the roles of inside and outside. (The latter case can only occur

when the reference point is outside of the convex moving object, a situation that commonly

arises when a non-convex moving object is decomposed into several convex sub-objects.)

Consider Figure 9. The projection of a type A surface is characterised by two straight

lines whose normals have orientations 01 + X, and 02 + X,, and whose normal distances from

the point b, are equal to IlaIcos(Xi - 7,). A circle of that radius, centered at b,, completes

the construction. Note that both the inside and outside regions are convex. Thus to test

whether a cell is inside or outside a constraint it suffices to test whether all the vertices of

its projection into the z-y plane lie in one region or another.

A point is in the outside region if it is outside both of the straight lines. It is inside

if it is inside both of the straight lines and not in the small area between the circle and

the point of intersection of the two lines. Such points have distance from b, greater than

the radius of the circle, and are on the opposite side of the chord (in figure 9 the dashed

line joining the two intersections of the circle with the straight lines) as point b,. That two

points are on opposite sides of the chord can be determined by comparing the signs of the

dot product of a normal to the chord, with vectors from one end of the chord to the two

points. One end of the chord has coordinates
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Figure 10. A "stack" of cells used to bound a three-dimensional configuration obstacle.

(b,. + Ila.1Icos (X, - 1,) COs (O + X,), bjy + IlaIlcos (X, - 7,)sin (01 X X,))

and a normal to the chord is

(sin (O, + X,) - sin (02+ X,), cos (02+ X,)- cos(0, + X,)).

3.4 Bounding Configuration Obstacles.

As 0 varies, the x and y bounds on the cross section of CO9(B) normal to the 0 axis varies

considerably. Hence, instead of using a single bounding rectangloid, COO(B) is represented

by a "stack" of cells in the 0 direction; see Figure 10. This significantly improves the

approximation. The stack of cells is obtained by, first, determining a number of sub-

intervals of the complete 0 range and, second, determining the x and y bounds of the

configuration obstacles over each sub-interval.

The sub-intervals are chosen as follows. The interval [-wi, 7rj is cut at all values of the

form 2nir + X, - 01 that, for some integer n, lie within the interval. Any constraint that

is valid for some interior point of one of the resulting sub-intervals is taken as valid over

the whole closed sub-interval.
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A conjunction of all valid constraints over a sub-interval forms the initial constraint

sentence of a cell whose 6 range corresponds to the sub-interval. Later the cells will

be embedded in the configuration space, and will perhaps be intersected with other cells,

whence their constraint sentences will become disjunctive terms of new constraint sentences.

For a cell whose 0 interval is [01, 62], the maximal x value, achieved over the points

that satisfy its constraint sentence, must occur at a point that has a 6 component within

that interval. Let the 6 component of this maximal point be 0 0. By convexity, the maximal

point must be a vertex of the convex polygon that is the cross section of COA(B) at 00.

For a fixed 0o, Lozano-Prez [1983] showed that this cross section is the convex huil of all

points of the form

(bl. + a., cos 00 - a% sin 00, bly + a,, sin 0 + a, cos 00, 0o)

where a, = (a.., a..) and b, = (b,2 , b,,) are vertices of A and B, respectively. The maximal

x value must be achieved at one of these points.

The maximal x value for these points can occur, over the interval [01, 021, either -when
0o = 01,60 = 02, or when the derivative (-a,,, sin 00 -ay cos go) is zero. The lat..e'(- curs

when

sin (0o + ?,} - 0

which means

Po =nr - i,

for some integer n. (Recall that ri, is the angle of the ray from the origin to a, relative to

the x axis in the local coordinate system of moving object A, whence a,, = I1a,Ilcos 77, and

a,2 = Ilaillsin ?7,.) Therefore, a least upper bound for x can be found by maximizing over

b,, for all j and maximizing over a,, cos0 0 - ai, sin 0o for all i and 00, from among the

three values given above. The bound for x is the sum of these two maxima. Similarly, a

lower bound for x can be found.

The y case is completely analogous, except that the second expression to be maximized 01
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is a,, sin 0o + aV cosOo and the derivative is zero valued when

cos (9 + =) 0

whence

00 (n 0. --r 7,

for some integer n.

3.5 Constructing an Initial Representation of Configuration Space.

The cells and associated constraint sentences constructed independently above for each pair

of moving object and fixed obstacle polygons, must be embedded in a common configuration

space. The technique used in the two-dimensional (fixed orientation) configuration space

can be extended to the three-dimensional configuration space. The coordinates are scanned

in some order and space is cut normal to the axis at every boundary of an embedded

cell. The extent of the cuts is bounded by cuts already made for earlier coordinates in

the sequence. There is an efficiency problem in using this straightforward generalisation,

Phowever. None of x, y, or 0 are attractive for the first direction of cutting.

Consider the 0 direction. In general, differently shaped or oriented obstacles will give

rise to different sets of cuts in the 0 direction for their respective COOA(B). Since every

COI(B) spans the whole range of 0, they will all be cut by every 9 cut of every other

configuration obstacle. This generates a tremendous number of cells.

The x and y directions do not suffer from the problem that every cut is felt globally by

all obstacles. But, the "stack" of B-slices of COA(B) gives rise to a large number of very

close z or y cuts, if either is chosen to be the first direction of cutting. (Refer to Figure 10.)

If another configuration obstacle lies in the path of these cuts it will be sliced into many

pieces, none of which reflect anything inherent in its local structure.

This problem is solved by first boxing the stack of 9 slices for a single configuration

4 obstacle into a single cell that extends over the range [-7r, 7r] in the 9 direction. Such
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cells are embedded into the configuration space that is sliced in the x and y directions.

(A simple heuristic can be used to choose which direction should be cut first: if the larger

component of the vector from the initial point to goal point is in the x direction, then

it is best to slice the space normal to the y-axis, as this has the possibility of providing

large empty corridors, parallel to the x-axis, along which the object can be moved with

almost no analysis.) Then, within each cell, the cutting procedure is used all over again,

first cutting normal to the 0-axis then normal to each of x and y.

The efficiency of the algorithm can be further enhanced by arranging for the second

stage of cutting to be carried out only if it is strictly needed. This is possible because

the second stage is a purely local computation and does not effect the global structure of

the configuration space representation. A bounding cell is labeled mixed and, instead of

a standard constraint sentence, it has associated with it a list of the 0 slices that must be

embedded within it. It is straightforward to allow for the intersection of such bounding cells

when they are embedded in the configuration space, and to compute the correct slice list

for the intersected regions. If the mixed cell is never examined during the search procedure,

then the second stage cutting operations need never be carried out. Otherwise the bounding 9.

cell is cut when it first becomes a candidate path cell as found by the A* search algorithm.

3.6 Deciding Where to Cut a Cell.

The same scoring function as was given in section 2.6 is used for three-dimensional

configuration space. Cuts are proposed for each constraint in the constraint sentence for

a cut normal to each coordinate axis: x, y and 0. Cuts are proposed wherever they would

make the constraint pass through a vertex of the newly cut cells. For each edge parallel to

the coordinate being considered for cutting, the constraint is "solved" for that coordinate.

A score is assigned to the cut, and overall the cut with least score is chosen.
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4. Search

The representation described above for configuration space is useful only if some efficient

way can be found to search it for collision-free paths. Our algorithm uses the A algorithm

as its primary search engine to search the cell connectivity graph, both for paths through

purely empty cells and for paths that include mixed cells.

Once a set of empty cells linking the initial point to the goal has been found, an actual

point path through those cells must be chosen. Again the A* search procedure is used, but

this time using a selected set of points in the cells along the solution path.

If no path through empty cells is available, then the representation of configuration

space must be refined through cell division. It is necessary, however, to decide where the

space should be refined, and how much effort should be expended in subdivision, before

a new search is initiated. The point path search mentioned above is used to direct the

refinement of configuration space as well as to produce a final solution path for the problem.

The efficiency of the overall search can be greatly improved by using the divide and

conquer paradigm. There are some complications in this application, however, as each

subproblem is capable of changing the global data base by refining the representation of

space within its area of search. This turns out to be a significant problem and some

care must be taken to minimize its adverse effects. There is an additional problem with

divide and conquer in this application. The division of a problem into subproblems cannot

guarantee that if the original problem is solvable then so are all the subproblems. A form
of resource limited computation is used to back out of problem subdivisions that do not

look promising.

4.1 Search Procedure.

The findpath algorithm as presented in overview in section 1 makes use of two almost

identical search procedures. One is to search for a connected set of empty cells that includes
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the cell containing the initial point in configuration space and the cell containing th( gna!

point. If that fails then the search is repeated but this time mixed cells are also considered.

The engine for both these searches is the A algorithm, presented in Nilsson [1971].

This is essentially a breadth first search, where a graph is searched to find a path from one

node to another. The search proceeds by extending partial paths from the initial node. At

each iteration, the lowest cost partial path is chosen and each of the neighbors of its latest

node is appended to the partial path to create an extended partial path. The evaluation

function used to rank partial paths is the sum of the cost in following the partial path and

an estimate of the remaining cost to get to the goal. It is well known that as long as the

estimate of remaining cost is a lower bound on the true remaining cost then this search

procedure yields the minimum cost path.

While searching for a path of connected cells, a candidate point path through each

partial cell path is "constructed". Each adjacent pair of cells intersect in a cell of one

lower dimension. In the case of two dimensions without rotations, the interaction cell is a

line segment and the centroid its midpoint, for example. The centroids of such interaction

sub-cells are used as the entry and exit points of the path through the cell, and a the path

segment within a cell is the straight line joining them.

The cost of an individual path segment is just its Euclidean length within the

configuration space. Thus the cost assigned to a partially developed path is the sum of

the costs of its path segments. The heuristic estimate of the cost of completing it, to reach

the goal point, is just the Euclidean length from the last point on the path to the goal

point. Clearly (by the triangle law) this is a lower bound on the actual cost. Furthermore,

it has obvious heuristic merit.

The running time of the search algorithm can be improved by making the cost of

traversing a mixed cell greater than the cost of traversing an empty cell. The relative cost

can be used to trade off running time of the search algorithm for length of the final path.

With a large relative cost, the A* algorithm will strongly tend to concentrate on empty cells.
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Bence, paths that require only a small amount or additional trail blazing through mixed

cells will be chosen, even if they are very long. In effect, A* will tend to skirt unexplored

areas of the search space and stick with known empty space. :1
The above cost function treats all dimensions of the configuration space uniformly but, j

in cases where rotations are allowed, there is no a priori reason that this should be so. One

can vary the weight given to rotational components (essentially stretching or compressing

the configuration space parallel to the rotation axes) in computing the Euclidean length of

the path segments within the space. This has no physical meaning in the original space,

but can be used to control the amount of rotation in the final path. When low weight is

used for rotations the final path tends to have seemingly arbitrary rotational perturbations

back and forth. Higher weight for rotations tends to smooth out the paths.

4.2 Choosing a Point Path.

When a final cell path consisting of empty cells has been found it is still necessary to find
U a path for the Configuration point of the moving object through configuration space. In

general, the choice of final path should be based on domain-specific considerations such as

kinematic or dynamic characteristics, not on purely geometric criteria. In the absence of

domain-specific considerations we suggest that a desirable property of the final path is that

it be smooth, essentially nulling out the artificial effects of the tesselation of configuration

space by the cell structure. Our approach is to consider alternative paths going through

a small set of candidate points in the interaction cell between adjacent cells in the chosen

path, and to choose the one that minimises the cost function.

Each pair of adjacent cells intersect in a cell of dimension one lower than that of the

configuration space. A few points are chosen from that interaction sub-cell as candidate

exit and entry points. For a two-dimensional configuration space the sub-cell is a line

segment; reasonable choices are the two end points and the midpoint. For three-dimensional

configuration space the sub-cell is a rectangle: in our implementation we used nine points,

the vertices, midpoints of the edges, and centroid of the rectangle.
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A graph can be constructed linking pairs of entry and exit points for each cell. The

graph is searched using the A' algorithm with the same cost function as detailed above.

Within each cell the point path is a single straight line that connects the chosen points.

4.3 Refining the Search Space.

After a search has found a sequence of empty and mixed cells, the mixed cells along the

path should be cut into at least two sub-cells and the search re-executed. This simple

strategy leads to a very slowly converging search algorithm, however. The ratio of cutting

to searching is too low. Arbitrarily cutting cells can also be wasted effort, however, so it is

better to find some selective method of determining places to make more cuts. We use the

point path search to identify such places.

The point path search of the previous section is used to find a point path through

the empty and mixed cells. All points at the interface between cells on that path are then

examined. It is easy to determine if a point is actually in free space by evaluating the

constraint sentence associated with one of the containing cells. If the point is actually in

free space, but its cell is mixed, then the cell is repeatedly divided until the point lies in

a newly created empty cell. (This same procedure is used to cut the space representation

about the initial and goal points to get empty initial and goal cells for the original search.)

The effect of this is to create small islands of empty cells along the trajectory, which will

be useful for defining recursive subproblems (see next section).

Initially there may be many large cells in the configuration space representation. If

an arbitrary point on the interface between two adjacent cells were chosen as a center of

refinement of the cell representation, it could well be that it is far from the optimal path.

By only expanding points on a candidate optimal path, the overall search operation is not

misled into grossly suboptimal areas of "easy pickings".
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4.4 Divide and Conquer. I
The efficiency of the search for a free cell path can be greatly improved by hierarchically

decomposing it into more localized and smaller problems. The search space is smaller for

a localized problem, resulting in reduced time for the overall search.

The problem is how to break up a global search into smaller ones when there is no a

priori knowledge of what the smaller subproblems are. The approach taken here is to use

the global search through mixed cells, and subsequent selection of a point path as a plan

for the lower level subproblems. If there are points on the path that, after cell refinement

as above, are in a known empty cell, then they are used as points at which the problem is

broken up. The global problem then becomes a series of local ones, each from an initial

point to a goal point where both are in empty cells.

Surprisingly, the order in which the subproblems are attempted is important. This

is because each subproblem may require that the global data base, the cell connectivity

graph, be altered, as mixed cells are cut. If the subproblems are evaluated with the one

closest to the global initial point first, and followed sequentially by those closer and closer

to the goal point, then this cutting has adverse effects on search efficiency. :

Consider the first subproblem in a sequence. In general, many cells near the goal point

will have been refined by the time a sub-path through empty cells has been found. Now the

second subproblem is attacked. Its initial point is the goal point of the previous subproblem.

When the A* search starts at that point it finds many small empty cells from the recent

search. These cells are in the wrong direction relative to the new goal, however; they are,

nevertheless, "attractive" to the search algorithm, because the evaluation function favors

empty cells. In addition the empty cells are small and, therefore, many can be appended to

partial paths near initial point without sharp increases in the heuristic estimate of remaining

cost. The result is that the A* algorithm can spend inordinate amounts of time breadth-

first searching backwards from the new initial point over areas covered by the previous

subproblem.
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Figure 11. If no restriction is placed on the path length used to solve a subproblem, very
inefficient paths may be found as illustrated here.

Fortunately, this wasted work can be avoided by solving the subproblems in the reverse

order - taking the one nearest to the global goal point first. This change avoids the problem

because the many small empty cells produced by previous problems are only encountered at

the end of the search. By then, the heuristic estimate of remaining cost tends to dominate

the differences in the evaluation function. The empty cells can only be reached by going

put the goal, so other cells along the way have smaller costs and will be developed first.

Another consideration in the use of divide and conquer is the possibility that a sub-

problem may be poorly chosen so that there is no very direct path between the chosen

initial and goal points. This can be the case even when the global problem is soluble. If

unlimited effort is expended on solving the subproblbm then it can happen that the final

path "backs" out from the initial point, finds a path around the obstacles that block a more

direct route from the initial to final position, then "backs" into the goal position. The two

subproblems on either side backtrack over those initial and final parts of the path. See

Figure 11 for an illustration of this effect.

In such cases, after some effort has been expended to determine that the direct path

is blocked, it would be better to back up to the more global problem and look for a new

path through mixed cells. This can be simply achieved by placing a path length limitation
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oil subproblems. As the search space is refined and new optimal paths are found through

with failure, forcing a new search at a higher level. In the examples given in this paper the

cost limitation for subproblems is 1.5 times the cost of the global path, or 1.5 times the

best cost ever computed for the sub-path, whichever is smaller.
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5. Conclusion

The algorithm described here has been implemented and tested on many randomly

generated examples. Figure 12 shows two difficult cases that the algorithm solves. We

believe these to be among the most difficult findpath problems ever solved by a program.

The running time of the algorithm on these examples is very high, however. The actual

running times for these difficult problems are on the order of tens of minutes of "wall-clock"

time on a single-user MIT Lisp Machine without floating point hardware; these times also

include a very significant paging overhead. Simple problems, of course, run much faster:

on the order of tens of seconds to a few minutes. This should be contrasted with running

times on the order of less than a minute for problems of moderate complexity using the

algorithm described in Brooks [1982]. This latter algorithm cannot solve problems such as

illustrated in Figure 12, however.

While the running times of the algorithm described here could be made significantly

shorter by implementation changes, the fact remains that the complexity of the algorithm is

high. Informal timing experiments seem to indicate that the algorithm spends much of the

running time in the A* search procedure, which is used at several points in the algorithm. If

the number of cells to be searched could be reduced, the running time could be significantly

reduced. One approach to doing this is to use an algorithm such as described by Brooks

119821 to identify a likely path, using a smaller and simpler moving object, and then apply

the algorithm described here to verify and refine the path for the actual moving object.

This would reduce the size of the search space for the algorithm. There are a number of

conceptual and technical problems to be solved before this hybrid approach is practical.

As of now, the algorithm described here can solve very complex problems, albeit slowly.

The approach followed in this algorithm can be directly applied to configuration spaces

for three-dimensional polyhedra whose orientation is fixed. This case generates a three-

dimensional configuration space with linear constraints, a direct generalization of Section

2. We believe that the generalization to a four-dimensional configuration space, such as

for a polyhedra with a single rotational degree of freedom, will be straightforward. A new
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Figure 12a. A path found by the algorithm for a convex r -ing object. The final
representation of configuration space for the problem has 766 ceils of which 122 are full,
524 are mixed and 120 are empty. The cells are linked by 2157 connecting arcs and the
final path goes through 87 of the empty cells (i.e. 71.3%).
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Figure 12b. A path found by the algorithm for a non-convex moving object. The final
representation of configuration space for the problem has 892 cells of which 110 are full,
720 are mixed and 62 are empty. The cells are linked by 2489 connecting arcs and the final
path goes through 29 of the empty cells (i.e. 46.7%).
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type of constraint surface must be dealt with, however, arising from the interaction of pairs

of edges (Lozano-P~rez [19831).

The approach could, in principle, also be generalized to configuration spaces of higher

dimension, such as those for polyhedra that are allowed to rotate. The actual generalization

presents a large number of problems, e.g., the CellCompare operation is substantially more

difficult, and the number of cells grows extremely fast. Other algorithms suggested for this

general case have the same drawback. The algorithm for the general findpath problem given

by Schwartz and Sharir [1982], for example, has a very high polynomial time complexity

for a fixed number of degrees of freedom and is exponential in the degrees of freedom. Our

belief is that, in practice, the general six degree of freedom problem should be heuristically

reduced to cases involving four or fewer degrees of freedom.

39



References

Brooks, Rodney A. (1982). Solving the find-path problem by representing free space as

generalized cones, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Al Memo 674, May.

Lozano-Prez, Tomis (1981). Automatic Planning of Manipulator Transfer

Movements, IEEE Trans. on Systems. Man and Cybernetics (SMC-11):681-698.

(1983). Spatial Planning: A Configuration Space Approach, IEEE Trans. on

Computers, in press.

-- (1983). Task Planning, in Robot Motion: Planning and Control, M. Brady, et

a]. eds., MIT Press.

Lozano-P6rez, Tomris and Michael A. Wesley (1979). An algorithm for planning

collision-free paths among polyhedral obstacles, C immunications of the ACM (22):560-570.

Moravec, Hans P. (1980). Obstacle Avoidance and Navigation in the Real World by a

Seeing Rribot Rover, Ph.D. Dissertation Stanford AIM-340, ScpV.

Nilsson, Nils J. (1971). Problem-Solving Methods in Artificial Intelligence, McGraw-

Hill, 1971.

Schwartz, Tacob T. and Micha Sharir (1981). On the Piano Movers Problem I: The

Case of a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers,

Department of Computer Science, Courant Institute of Mathematical Sciences, NYU,

Report 39, October.

Schwartz, Jacob T. and Micha Sharir (1982). On the Piano Movers Problem II:

General Properties for Computing Topological Properties of Real Algebraic Manifolds,

40

I.:1



Department of Computer Science, Courant Institute of Mathematical Sciences, NYU,

Report 41, February.

Udupa, Shriram M. (1977). Collision Detection and Avoidance in Computer Controlled

Manipulators, Proceedings of IJCAI-5, MIT, Cambridge, Ma., Aug. 1977, 737-748.

41



6 06

IILI .1. 0

4N4

*4 7

* tt

S .~1-3


